JEM/SMILES limb sounder: the Level 2 research products

P. Baron1, Y. Kasai1, S. Ochiai1, J. Mendrok1
J. Urban2, J. Möller2, D. Murtagh2
and the SMILES retrieval algorithm team

(1) National Institute of Information and Communications Technology (NICT), Tokyo, Japan.
(2) Chalmers University of Technology, Goteborg, Sweden
Outline

• Brief introduction about SMILES observations

• Description of the L2 research products

• Description of the processing chain for the L2-research

• Conclusions and future works
Superconducting submillimeter-Wave Limb Emission Sounder (SMILES) overview

- Limb-sounder to study the middle atmosphere chemistry and dynamics (~10-~80 km)
- High sensitive sub-millimeter receiver (first use for atmospheric observation of a 4K cooled SIS mixer in space)
- Operate from the Japanese Experiment Module (JEM) on the International Space Station (ISS).
- To be launched in Sept. 2009
Observation characteristics

- Atmosphere is repeatedly scanned from the below surface to ~100 km height (1600 scans/day).
- 3 spectral bands ($\lambda=0.1$ mm) have been defined but only 2 are simultaneously observed during one scan.
- Vertical distribution of molecular abundances and temperature/pressure (Level 2 data) are derived from each scan.
Frequency bands

band A

band B

band C

from SMILES Mission Plan
SMILES geophysical (Level 2) data

Level 1b
(calibrated spectra and attitude data)

ISAS/JAXA

JAXA (Tsukuba)

NICT

Level 2 operational products

Level 2 research products
Why a L2 research product?

• Support the operational chain:
 – cross-comparison of the products (retrieval algorithms validation)
 – investigate improvement for retrieval algorithms
 – correct instrument problems observed after launch

• Produce data that are not in the operational data
 – UT/LS H2O, ice water content ...
 – mesospheric data
 – molecules with extremely low SNR

• Research on atmospheric remote sensing
The Level 2 research products

<table>
<thead>
<tr>
<th>Processing modes</th>
<th>Band A</th>
<th>Band B</th>
<th>Band C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratospheric</td>
<td>O$_3$, H37Cl, H$_2$O, Temp, Pointing offset, wind</td>
<td>O$_3$, H35Cl, H$_2$O, Temp, Pointing offset, wind</td>
<td>H$_2$O, ClO, O$_3$</td>
</tr>
<tr>
<td>high SNR 10-60 km</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratospheric</td>
<td>HOCI, CH$_3$CN, 18OOO, HNO$_3$, BrO, H$_2$O$_2$, SO$_2$</td>
<td>N$_2$O, 18OOO, HO$_2$, HNO$_3$, SO$_2$, O17OO</td>
<td>18OOO, 17OOO, HO$_2$, HNO$_3$, BrO, O17OO</td>
</tr>
<tr>
<td>medium/low SNR 10-60 km</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesospheric</td>
<td>O$_3$, H37Cl, wind, 18OOO, H$_2$O$_2$</td>
<td>O$_3$, H35Cl, wind, 18OOO, HO$_2$, SO$_2$</td>
<td>HO$_2$, 18OOO, 17OOO, ClO</td>
</tr>
<tr>
<td>medium/low SNR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT/LS</td>
<td>H$_2$O, Ice water content, O$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extremely Low SNR</td>
<td>H$_2$CO, HOBr, ClONO$_2$, OCIO, CIOOCI, H$_2$SO$_4$</td>
<td>CH$_3$Cl, H$_2$CO, HOBr, ClONO$_2$, OCIO, CIOOCI</td>
<td>COF$_2$, ClONO$_2$, NO$_2$, OCIO, CIOOCI</td>
</tr>
</tbody>
</table>

blue: single scan, red: daily average, green: monthly average, black: very challenging
Example of mesospheric products:

HO2 (band B)

- **Averaging kernel**
- **black-dots**: a priori error
- **full line**: single scan precision
- **dashed line**: daily average precision
- **dash-dot line**: monthly average

Altitude coverage: 50 - 96 km
Vertical resolution: 4.5 km
Single scan precision: 100 %
Daily average: 10-20%

H2O2 (band C)

- **Averaging kernel**
- **Averaging kernel**

Altitude coverage: 64 - 80 km
Vertical resolution: 8 - 12 km
Single scan precision: 500 %
Monthly average: 10%
The L2 research processing chain

JAXA (Tsukuba)

- level 1b (Level 0)

NASA’s GODDARD Space flight center (USA)

- Meteorological data

JAXA/ISAS

- Climatology and Level 2 operational

NICT

- L2 research Processing: AMATERASU

- System/job management, data access, quicklook services...

- Download services

- Database and files storage systems
 - L1
 - L2
 - L3
 - Other data...

- Algorithm team

- Researchers
AMATERASU:

Advanced Model for Atmospheric TeraHertz Radiation Analysis and Simulation

• Model that is being developed in NICT for simulating SMILES radiances and retrieve atmospheric parameters (level 2)

• General model (not only used for SMILES):
 – Applicable from micro-wave to IR spectral domains
 – Applicable for different observation geometries and atmospheres
 – Able to take into account clouds on the line of sight
 – Horizontal inhomogeneities along the line of sight
Retrieval strategy:

For each scan retrieve bands configuration: A+B, A+C, B+C

- **High SNR retrieval**
 - O3, HCl, pointing, T/p, ...

- **Medium SNR retrieval**
 - HOCl, ...

- **Mesosphere retrieval**
 - O3, ...

- **Other modes**

- **Select data for band A or B**

- **Select data for band C**

- **No strong signal**

- **UT/LS retrieval**
 - H2O, IWC, O3

- **Medium SNR retrieval**
 - O3, ClO, ...

- **Mesosphere retrieval**
 - HO2, ...
Some details about the chain

• 4 computers:
 – 1 management computer
 – 1 file server with high storage capability (Raid 5 system)
 – 2 processing computers with high CPU capabilities

• Un-interruptible power supply (battery pack)

• Software:
 – Ubuntu Linux
 – Torques/MAUI for batch processing
 – MySQL database
 – Python + additional libraries (calculation/visualization/database connection)
 – AMATERASU code for L2 retrieval calculations
Conclusions

• A **L2 research** chain for JEM/SMILES is under development at NICT:
 – Same molecules as the operational chain will be produced, plus extra-products (UT/LS, mesosphere, extremely low SNR)
 – A first version of the retrieval strategy has been defined and a data processing chain is being installed in NICT

• A full error analysis will be carried out to estimate the accuracy and the precision of the research products before launch.

• Improvements of the retrieval strategy are already being investigated: joint AOS bands and pointing jitter retrievals, ...
Collaborations

• SMILES L2 team (JAXA/ISAS)
• SMILES instrument team (JAXA, NICT + Osaka prefecture university + Toho university)
• Chalmers University of Technology
• Luleå Technical University (Sweden)
• Jet Propulsion Laboratory (US)

• System Engineering Consultants (SEC), Tokyo

To use the SMILES data, please write a research announcement proposal (soon at http://smiles.tksc.jaxa.jp)